Author: 0xjacobzhao | https://linktr.ee/0xjacobzhao In our previous Crypto AI series research reports, we have consistently emphasized the view that the most practical application scenarios in the current crypto field are mainly concentrated in stablecoin payments and DeFi, while Agents are the key interface for the AI industry facing users. Therefore, in the trend of Crypto and AI integration, the two most valuable paths are: AgentFi, based on existing mature DeFi protocols (basic strategies like lending and liquidity mining, as well as advanced strategies like Swap, Pendle PT, and funding rate arbitrage) in the short term; and Agent Payment, centering on stablecoin settlement and relying on protocols such as ACP/AP2/x402/ERC-8004 in the medium to long term. Prediction markets have become an undeniable new industry trend in 2025, with their total annual trading volume surging from approximately $9 billion in 2024 to over $40 billion in 2025, achieving a year-over-year growth of more than 400%. This significant growth is driven by multiple factors: uncertainty demand brought by macro-political events (such as the 2024 US election), the maturity of infrastructure and trading models, and the thawing of the regulatory environment (Kalshi's lawsuit victory and Polymarket's return to the US). Prediction Market Agents are showing early embryonic forms in early 2026 and are poised to become a continuously emerging product form in the agent field over the coming year. I. Prediction Markets: Betting to Truth Layer A prediction market is a financial mechanism for trading on the outcomes of future events. Contract prices essentially reflect the market's collective judgment on the probability of an event occurring. Its effectiveness stems from the combination of crowd wisdom and economic incentives: in an environment of anonymous, real-money betting, scattered information is quickly integrated into price signals weighted by financial willingness, thereby significantly reducing noise and false judgments. By the end of 2025, prediction markets have basically formed a duopoly dominated by Polymarket and Kalshi. According to Forbes, the total trading volume in 2025 reached approximately $44 billion, with Polymarket contributing about $21.5 billion and Kalshi about $17.1 billion. Relying on its legal victory in the previous election contract case, its first-mover compliance advantage in the US sports prediction market, and relatively clear regulatory expectations, Kalshi has achieved rapid expansion. Currently, the development paths of the two have shown clear differentiation: Polymarket adopts a mixed CLOB architecture with "off-chain matching, on-chain settlement" and a decentralized settlement mechanism, building a globalized, non-custodial high-liquidity market. After returning to the US with compliance, it formed an "onshore + offshore" dual-track operating structure.Kalshi integrates into the traditional financial system, accessing mainstream retail brokerages via API, attracting Wall Street market makers to participate deeply in macro and data-type contract trading. Its products are constrained by traditional regulatory processes, and long-tail demands and sudden events lag relatively behind. Apart from Polymarket and Kalshi, other competitive players in the prediction market field are developing mainly along two paths: First is the compliance distribution path, embedding event contracts into the existing account systems of brokerages or large platforms, relying on channel coverage, clearing capabilities, and institutional trust to build advantages (e.g., ForecastTrader by Interactive Brokers and ForecastEx, and FanDuel Predicts by FanDuel and CME).Second is the on-chain performance and capital efficiency path. Taking the Solana ecosystem's perpetual contract DEX Drift as an example, it added a prediction market module B.E.T (prediction markets) on top of its original product line. The two paths—traditional financial compliance entry and crypto-native performance advantages—together constitute the diversified competitive landscape of the prediction market ecosystem.
Prediction markets appear similar to gambling on the surface and are essentially zero-sum games. However, the core difference lies not in the form, but in whether they possess positive externalities: aggregating scattered information through real-money trading to publicly price real-world events, forming a valuable signal layer. Despite limitations such as entertainment-focused participation, the trend is shifting from gaming to a "Global Truth Layer"—with the access of institutions like CME and Bloomberg, event probabilities have become decision-making metadata that can be directly called by financial and enterprise systems, providing a more timely and quantifiable market-based truth. II. Prediction Agents: Architecture & Strategy Currently, Prediction Market Agents are entering an early practice stage. Their value lies not in "AI predicting more accurately," but in amplifying information processing and execution efficiency in prediction markets. The essence of a prediction market is an information aggregation mechanism, where price reflects the collective judgment of event probability; market inefficiencies in reality stem from information asymmetry, liquidity, and attention constraints. The reasonable positioning of a Prediction Market Agent is Executable Probabilistic Portfolio Management: converting news, rule texts, and on-chain data into verifiable pricing deviations, executing strategies in a faster, more disciplined, and lower-cost manner, and capturing structural opportunities through cross-platform arbitrage and portfolio risk control. An ideal Prediction Market Agent can be abstracted into a four-layer architecture: Information Layer: Aggregates news, social media, on-chain, and official data.Analysis Layer: Uses LLMs and ML to identify mispricing and calculate Edge.Strategy Layer: Converts Edge into positions through the Kelly criterion, staggered entry, and risk control.Execution Layer: Completes multi-market order placement, slippage and Gas optimization, and arbitrage execution, forming an efficient automated closed loop.
The ideal business model design for Prediction Market Agents has different exploration spaces at different levels: Bottom Infrastructure Layer: Provides multi-source real-time data aggregation, Smart Money address libraries, unified prediction market execution engines, and backtesting tools. Charges B2B/B2D fees to obtain stable revenue unrelated to prediction accuracy.Middle Strategy Layer: Precipitates modular strategy components and community-contributed strategies in an open-source or Token-Gated manner, forming a composable strategy ecosystem and achieving value capture.Top Agent Layer: Directly runs live trading through trusted managed Vaults, realizing capabilities with transparent on-chain records and a 20–30% performance fee (plus a small management fee). The ideal Prediction Market Agent is closer to an "AI-driven probabilistic asset management product," gaining returns through long-term disciplined execution and cross-market mispricing gaming, rather than relying on single-time prediction accuracy. The core logic of the diversified revenue structure of "Infrastructure Monetization + Ecosystem Expansion + Performance Participation" is that even if Alpha converges as the market matures, bottom-layer capabilities such as execution, risk control, and settlement still have long-term value, reducing dependence on the single assumption that "AI consistently beats the market." Prediction Market Agent Strategy Analysis: Theoretically, Agents have advantages in high-speed, 24/7, and emotion-free execution. However, in prediction markets, this is often difficult to convert into sustainable Alpha. Its effective application is mainly limited to specific structures, such as automated market making, cross-platform mispricing capture, and information integration of long-tail events. These opportunities are scarce and constrained by liquidity and capital. Market Selection: Not all prediction markets have tradable value. Participation value depends on five dimensions: settlement clarity, liquidity quality, information advantage, time structure, and manipulation risk. It is recommended to prioritize the early stages of new markets, long-tail events with few professional players, and fleeting pricing windows caused by time zone differences; avoid high-heat political events, subjective settlement markets, and varieties with extremely low liquidity.Order Strategy: Adopt strict systematic position management. The prerequisite for entry is that one's own probability judgment is significantly higher than the market implied probability. Positions are determined based on the fractional Kelly criterion (usually 1/10–1/4 Kelly), and single event risk exposure does not exceed 15%, to achieve robust growth with controllable risk, bearable drawdowns, and compoundable advantages in the long run.Arbitrage Strategy: Arbitrage in prediction markets is mainly manifested in four types: cross-platform spread (be wary of settlement differences), Dutch Book arbitrage (high certainty but strict liquidity requirements), settlement arbitrage (relies on execution speed), and correlated asset hedging (limited by structural mismatch). The key to practice lies not in discovering spreads, but in strictly aligning contract definitions and settlement standards to avoid pseudo-arbitrage caused by subtle rule differences.Smart Money Copy-Trading: On-chain "Smart Money" signals are not suitable as a main strategy due to lagging, inducement risks, and sample issues. A more reasonable usage is as a confidence adjustment factor, used to assist core judgments based on information and pricing deviations. III. Noya.ai: Intelligence to Action As an early exploration of Prediction Market Agents, NOYA's core philosophy is "Intelligence That Acts." In on-chain markets, pure analysis and insight are not enough to create value—although dashboards, data analysis, and research tools can help users understand "what might happen," there is still a large amount of manual operation, cross-chain friction, and execution risk between insight and execution. NOYA is built based on this pain point: compressing the complete link of "Research → Form Judgment → Execution → Continuous Monitoring" in the professional investment process into a unified system, enabling intelligence to be directly translated into on-chain action. NOYA achieves this goal by integrating three core levels: Intelligence Layer: Aggregates market data, token analysis, and prediction market signals.Abstraction Layer: Hides complex cross-chain routing; users only need to express Intent.Execution Layer: AI Agents execute operations across chains and protocols based on user authorization. In terms of product form, NOYA supports different participation methods for passive income users, active traders, and prediction market participants. Through designs like Omnichain Execution, AI Agents & Intents, and Vault Abstraction, it modularizes and automates multi-chain liquidity management, complex strategy execution, and risk control. The overall system forms a continuous closed loop: Intelligence → Intent → Execution → Monitoring, achieving efficient, verifiable, and low-friction conversion from insight to execution while ensuring users always maintain control over their assets.
IV. Noya.ai's Product System Evolution Core Cornerstone: Noya Omnichain Vaults Omnivaults is NOYA's capital deployment layer, providing cross-chain, risk-controlled automated yield strategies. Users hand over assets to the system to run continuously across multiple chains and protocols through simple deposit and withdrawal operations, without the need for manual rebalancing or monitoring. The core goal is to achieve stable risk-adjusted returns rather than short-term speculation. Omnivaults cover strategies like standard yield and Loop, clearly divided by asset and risk level, and support optional bonding incentive mechanisms. At the execution level, the system automatically completes cross-chain routing and optimization, and can introduce ZKML to provide verifiable proof for strategy decisions, enhancing the transparency and credibility of automated asset management. The overall design focuses on modularity and composability, supporting future access to more asset types and strategy forms.
NOYA Vault Technical Architecture: Each vault is uniformly registered and managed through the Registry; the AccountingManager is responsible for user shares (ERC-20) and NAV pricing; the bottom layer connects to protocols like Aave and Uniswap through modular Connectors and calculates cross-protocol TVL, relying on Value Oracle (Chainlink + Uniswap v3 TWAP) for price routing and valuation; trading and cross-chain operations are executed by Swap Handler (LiFi); finally, strategy execution is triggered by Keeper Multi-sig, forming a composable and auditable execution closed loop. Future Alpha: Prediction Market Agent NOYA's most imaginative module: the Intelligence layer continuously tracks on-chain fund behavior and off-chain narrative changes, identifying news shocks, emotional fluctuations, and odds mismatches. When probability deviations are found in prediction markets like Polymarket, the Execution layer AI Agent can mobilize vault funds for arbitrage and rebalancing under user authorization. At the same time, Token Intelligence and Prediction Market Copilot provide users with structured token and prediction market analysis, directly converting external information into actionable trading decisions. Prediction Market Intelligence Copilot NOYA is committed to upgrading prediction markets from single-event betting to systematically manageable probabilistic assets. Its core module integrates diverse data such as market implied probability, liquidity structure, historical settlements, and on-chain smart money behavior. It uses Expected Value (EV) and scenario analysis to identify pricing deviations and focuses on tracking position signals of high-win-rate wallets to distinguish informed trading from market noise. Based on this, Copilot supports cross-market and cross-event correlation analysis and transmits real-time signals to AI Agents to drive automated execution such as opening and rebalancing positions, achieving portfolio management and dynamic optimization of prediction markets. Core Strategy Mechanisms include: Multi-source Edge Sourcing: Fuses Polymarket real-time odds, polling data, private and external information flows to cross-verify event implied probabilities, systematically mining information advantages that have not been fully priced in.Prediction Market Arbitrage: Builds probabilistic and structural arbitrage strategies based on pricing differences across different markets, different contract structures, or similar events, capturing odds convergence returns while controlling directional risk.Auto-adjust Positions (Odds-Driven): When odds shift significantly due to changes in information, capital, or sentiment, the AI Agent automatically adjusts position size and direction, achieving continuous optimization in the prediction market rather than a one-time bet. NOYA Intelligence Token Reports NOYA's institutional-grade research and decision hub aims to automate the professional crypto investment research process and directly output decision-level signals usable for real asset allocation. This module presents clear investment stances, comprehensive scores, core logic, key catalysts, and risk warnings in a standardized report structure, continuously updated with real-time market and on-chain data. Unlike traditional research tools, NOYA's intelligence does not stop at static analysis but can be queried, compared, and followed up by AI Agents in natural language. It is directly fed to the execution layer to drive subsequent cross-chain trading, fund allocation, and portfolio management, thereby forming a "Research—Decision—Execution" integrated closed loop, making Intelligence an active signal source in the automated capital operation system. NOYA AI Agent (Voice & Natural Language Driven) The NOYA AI Agent is the platform's execution layer, whose core role is to directly translate user intent and market intelligence into authorized on-chain actions. Users can express goals via text or voice, and the Agent is responsible for planning and executing cross-chain, cross-protocol operations, compressing research and execution into a continuous process. It is a key product form for NOYA to lower the threshold for DeFi and prediction market operations. Users do not need to understand the underlying links, protocols, or transaction paths. They only need to express their goals through natural language or voice to trigger the AI Agent to automatically plan and execute multi-step on-chain operations, achieving "Intent as Execution." Under the premise of full-process user signing and non-custody, the Agent operates in a closed loop of "Intent Understanding → Action Planning → User Confirmation → On-chain Execution → Result Monitoring." It does not replace decision-making but is only responsible for efficient implementation and execution, significantly reducing the friction and threshold of complex financial operations. Trust Moat: ZKML Verifiable Execution Verifiable Execution aims to build a verifiable closed loop for the entire process of strategy, decision-making, and execution. NOYA introduces ZKML as a key mechanism to reduce trust assumptions: strategies are calculated off-chain and verifiable proofs are generated; corresponding fund operations can only be triggered after on-chain verification passes. This mechanism can provide credibility for strategy output without revealing model details and supports derivative capabilities such as verifiable backtesting. Currently, relevant modules are still marked as "under development" in public documents, and engineering details remain to be disclosed and verified. Future 6-Month Product Roadmap Prediction Market Advanced Order Capabilities: Improve strategy expression and execution precision to support Agent-based trading.Expansion to Multi-Prediction Markets: Access more platforms beyond Polymarket to expand event coverage and liquidity.Multi-source Edge Information Collection: Cross-verify with handicap odds to systematically capture underpriced probability deviations.Clearer Token Signals & Advanced Reports: Output trading signals and in-depth on-chain analysis that can directly drive execution.Advanced On-chain DeFi Strategy Combinations: Launch complex strategy structures to improve capital efficiency, returns, and scalability. V. Noya.ai's Ecosystem Growth Currently, Omnichain Vaults are in the early stage of ecosystem development, and their cross-chain execution and multi-strategy framework have been verified. Strategy & Coverage: The platform has integrated mainstream DeFi protocols such as Aave and Morpho, supports cross-chain allocation of stablecoins, ETH, and their derivative assets, and has preliminarily built a layered risk strategy (e.g., Basic Yield vs. Loop Strategy).Development Stage: The current TVL volume is limited. The core goal lies in functional verification (MVP) and risk control framework refinement. The architectural design has strong composability, reserving interfaces for the subsequent introduction of complex assets and advanced Agent scheduling. Incentive System: Kaito Linkage & Space Race Dual Drive NOYA has built a growth flywheel deeply binding content narrative and liquidity anchored on "Real Contribution." Ecosystem Partnership (Kaito Yaps): NOYA landed on Kaito Leaderboards with a composite narrative of "AI × DeFi × Agent," configuring an unlocked incentive pool of 5% of the total supply, and reserving an additional 1% for the Kaito ecosystem. Its mechanism deeply binds content creation (Yaps) with Vault deposits and Bond locking. User weekly contributions are converted into Stars that determine rank and multipliers, thereby synchronously strengthening narrative consensus and long-term capital stickiness at the incentive level.Growth Engine (Space Race): Space Race constitutes NOYA's core growth flywheel, replacing the traditional "capital scale first" airdrop model by using Stars as long-term equity credentials. This mechanism integrates Bond locking bonuses, two-way 10% referral incentives, and content dissemination into a weekly Points system, filtering out long-term users with high participation and strong consensus, and continuously optimizing community structure and token distribution.Community Building (Ambassador): NOYA adopts an invitation-only ambassador program, providing qualified participants with community round participation qualifications and performance rebates based on actual contributions (up to 10%). Currently, Noya.ai has accumulated over 3,000 on-chain users, and its X platform followers have exceeded 41,000, ranking in the top five of the Kaito Mindshare list. This indicates that NOYA has occupied a favorable attention niche in the prediction market and Agent track. In addition, Noya.ai's core contracts have passed dual audits by Code4rena and Hacken, and have accessed Hacken Extractor. VI. Tokenomics Design and Governance NOYA adopts a Single-token ecosystem model, with $NOYA as the sole value carrier and governance vehicle. NOYA employs a Buyback & Burn value capture mechanism. The value generated by the protocol layer in products such as AI Agents, Omnivaults, and prediction markets is captured through mechanisms like staking, governance, access permissions, and buyback & burn, forming a value closed loop of Use → Fee → Buyback, converting platform usage into long-term token value. The project takes Fair Launch as its core principle. It did not introduce angel round or VC investment but completed distribution through a public community round (Launch-Raise) with a low valuation ($10M FDV), Space Race, and airdrops. It deliberately reserves asymmetric upside space for the community, making the chip structure more biased towards active users and long-term participants; team incentives mainly come from long-term locked token shares. Token Distribution: Total Supply: 1 Billion (1,000,000,000) NOYAInitial Float (Low Float): ~12%Valuation & Financing (The Raise): Financing Amount: $1 Million; Valuation (FDV): $10 Million
VII. Prediction Agent Competitive Analysis Currently, the Prediction Market Agent track is still in its early stages with a limited number of projects. Representative ones include Olas (Pearl Prediction Agents), Warden (BetFlix), and Noya.ai. From the perspective of product form and user participation, each represents three types of paths in the current prediction market agent track: Olas (Pearl Prediction Agents): Agent Productization & Runnable Delivery. Participated by "running an automated prediction Agent," encapsulating prediction market trading into a runnable Agent: users inject capital and run it, and the system automatically completes information acquisition, probability judgment, betting, and settlement. The participation method requiring additional installation has relatively limited friendliness for ordinary users.Warden (BetFlix): Interactive Distribution & Consumer-grade Betting Platform. Attracts user participation through a low-threshold, highly entertaining interactive experience. Adopts an interaction and distribution-oriented path, lowering participation costs with gamified and content-based frontends, emphasizing the consumption and entertainment attributes of prediction markets. Its competitive advantage mainly comes from user growth and distribution efficiency, rather than strategy or execution layer depth.NOYA.ai: Centered on "Fund Custody + Strategy Execution on Behalf," abstracting prediction markets and DeFi execution into asset management products through Vaults, providing a participation method with low operation and low mental burden. If the Prediction Market Intelligence and Agent execution modules are superimposed later, it is expected to form a "Research—Execution—Monitoring" integrated workflow
Compared with AgentFi projects that have achieved clear product delivery such as Giza and Almanak, NOYA's DeFi Agent is currently still in a relatively early stage. However, NOYA's differentiation lies in its positioning and entry level: it enters the same execution and asset management narrative track with a fair launch valuation of about $10M FDV, possessing significant valuation discount and growth potential at the current stage. NOYA: An AgentFi project encapsulating asset management centered on Omnichain Vault. Current delivery focus is on infrastructure layers like cross-chain execution and risk control. Upper-layer Agent execution, prediction market capabilities, and ZKML-related mechanisms are still in the development and verification stage.Giza: Can directly run asset management strategies (ARMA, Pulse). Currently has the highest AgentFi product completion.Almanak: Positioned as AI Quant for DeFi, outputting strategy and risk signals through models and quantitative frameworks. Mainly targets professional fund and strategy management needs, emphasizing methodological systematicness and result reproducibility.Theoriq: Centered on multi-agent collaboration (Agent Swarms) strategy and execution framework, emphasizing scalable Agent collaboration systems and medium-to-long-term infrastructure narratives, leaning more towards bottom-layer capability construction.Infinit: An Agentic DeFi terminal leaning towards the execution layer. Through process orchestration of "Intent → Multi-step on-chain operation," it significantly lowers the execution threshold of complex DeFi operations, and users' perception of product value is relatively direct. VIII. Summary: Business, Engineering and Risks Business Logic: NOYA is a rare target in the current market that superimposes multiple narratives of AI Agent × Prediction Market × ZKML, and further combines the product direction of Intent-Driven Execution. At the asset pricing level, it launches with an FDV of approximately $10M, significantly lower than the common $75M–$100M valuation range of similar AI / DeFAI / Prediction related projects, forming a certain structural price difference. Design-wise, NOYA attempts to unify Strategy Execution (Vault / Agent) and Information Advantage (Prediction Market Intelligence) into the same execution framework, and establishes a value capture closed loop through protocol revenue return (fees → buyback & burn). Although the project is still in its early stages, under the combined effect of multi-narrative superposition and low valuation starting point, its risk-return structure is closer to a type of high-odds, asymmetric betting target. Engineering Implementation: At the verifiable delivery level, NOYA's core function currently online is Omnichain Vaults, providing cross-chain asset scheduling, yield strategy execution, and delayed settlement mechanisms. The engineering implementation is relatively foundational. The Prediction Market Intelligence (Copilot), NOYA AI Agent, and ZKML-driven verifiable execution emphasized in its vision are still in the development stage and have not yet formed a complete closed loop on the mainnet. It is not a mature DeFAI platform at this stage. Potential Risks & Key Focus Points: Delivery Uncertainty: The technological span from "Basic Vault" to "All-round Agent" is huge. Be alert to the risk of Roadmap delays or ZKML implementation falling short of expectations.Potential System Risks: Including contract security, cross-chain bridge failures, and oracle disputes specific to prediction markets (such as fuzzy rules leading to inability to adjudicate). Any single point of failure could cause fund loss.
Disclaimer: This article was created with the assistance of AI tools such as ChatGPT-5.2, Gemini 3, and Claude Opus 4.5. The author has tried their best to proofread and ensure the information is true and accurate, but omissions are inevitable. Please understand. It should be specially noted that the crypto asset market generally has a divergence between project fundamentals and secondary market price performance. The content of this article is only for information integration and academic/research exchange, does not constitute any investment advice, and should not be considered as a recommendation to buy or sell any tokens.
免责声明:本文在创作过程中借助了 ChatGPT-5.2, Gemini 3和Claude Opus 4.5等 AI 工具辅助完成,作者已尽力校对并确保信息真实与准确,但仍难免存在疏漏,敬请谅解。需特别提示的是,加密资产市场普遍存在项目基本面与二级市场价格表现背离的情况。本文内容仅用于信息整合与学术/研究交流,不构成任何投资建议,亦不应视为任何代币的买卖推荐。
Verstärkungslernen: Der Paradigmenwechsel der dezentralen KI
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Dieser unabhängige Forschungsbericht wird von IOSG Ventures unterstützt. Der Forschungs- und Schreibprozess wurde von der Arbeit von Sam Lehman (Pantera Capital) zur Verstärkungslernen inspiriert. Danke an Ben Fielding (Gensyn.ai), Gao Yuan (Gradient), Samuel Dare & Erfan Miahi (Covenant AI), Shashank Yadav (Fraction AI), Chao Wang für ihre wertvollen Vorschläge zu diesem Artikel. Dieser Artikel strebt nach Objektivität und Genauigkeit, aber einige Ansichten beinhalten subjektive Urteile und können Vorurteile enthalten. Wir schätzen das Verständnis der Leser.
Dieser unabhängige Forschungsbericht wird von IOSG Ventures unterstützt. Der Forschungs- und Schreibprozess wurde von Sam Lehman (Pantera Capital) und seinem Bericht über verstärktes Lernen inspiriert. Besonderer Dank gilt Ben Fielding (Gensyn.ai), Gao Yuan (Gradient), Samuel Dare & Erfan Miahi (Covenant AI), Shashank Yadav (Fraction AI) und Chao Wang für ihre wertvollen Vorschläge zu diesem Artikel. Dieser Artikel strebt nach objektivem und genauem Inhalt, einige Ansichten beinhalten subjektive Urteile, was unvermeidlich zu Verzerrungen führen kann. Wir bitten die Leser um Verständnis. Künstliche Intelligenz entwickelt sich von einem auf "Modellanpassung" basierenden statistischen Lernen hin zu einem Fähigkeitsystem, das auf "strukturiertem Schlussfolgern" basiert. Die Bedeutung des Post-Trainings steigt schnell an. Das Auftreten von DeepSeek-R1 markiert einen paradigmatischen Umschwung des verstärkenden Lernens im Zeitalter großer Modelle, und es entsteht ein Branchenkonsens: Die Vorab-Training schafft die Grundlage für die allgemeine Fähigkeit des Modells, während verstärktes Lernen nicht mehr nur ein Werkzeug zur Wertausrichtung ist, sondern sich als systematische Verbesserung der Qualität der Schlussfolgerungsketten und der komplexen Entscheidungsfähigkeit erwiesen hat und sich schrittweise zu einem technischen Weg entwickelt, der das Intelligenzniveau kontinuierlich erhöht.
Dieser unabhängige Forschungsbericht wird von IOSG Ventures unterstützt. Der Forschungs- und Schreibprozess wurde von verwandten Arbeiten von Raghav Agarwal (LongHash) und Jay Yu (Pantera) inspiriert. Dank an Lex Sokolin @ Generative Ventures, Jordan@AIsa, Ivy @PodOur2Cents für ihre wertvollen Vorschläge zu diesem Artikel. Feedback wurde auch von Projektteams wie Nevermined, Skyfire, Virtuals Protocol, AIsa, Heurist, AEON während des Schreibprozesses eingeholt. Dieser Artikel strebt nach objektivem und genauem Inhalt, aber einige Sichtweisen beinhalten subjektive Bewertungen und können unvermeidlich Abweichungen enthalten. Das Verständnis der Leser wird geschätzt.
Dieser unabhängige Forschungsbericht wird von IOSG Ventures unterstützt. Der Forschungs- und Schreibprozess wurde von den relevanten Berichten von Raghav Agarwal@LongHash und Jay Yu@Pantera inspiriert. Dank an Lex Sokolin @ Generative Ventures, Jordan@AIsa, Ivy@(支无不言) Blog für die wertvollen Vorschläge zu diesem Artikel. Während des Schreibprozesses wurden auch Meinungen und Rückmeldungen von den Projektteams von Nevermined, Skyfire, Virtuals Protocol, AIsa, Heurist, AEON usw. eingeholt. Dieser Artikel strebt an, objektiv und genau zu sein; einige Ansichten beinhalten subjektive Urteile, was unvermeidlich zu Abweichungen führen kann. Wir bitten die Leser um Verständnis.
Die konvergente Evolution von Automatisierung, KI und Web3 in der Robotikbranche
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Dieser unabhängige Forschungsbericht wird von IOSG Ventures unterstützt. Der Autor dankt Hans (RoboCup Asien-Pazifik), Nichanan Kesonpat (1kx), Robert Koschig (1kx), Amanda Young (Collab+Currency), Jonathan Victor (Ansa Research), Lex Sokolin (Generative Ventures), Jay Yu (Pantera Capital), Jeffrey Hu (Hashkey Capital) für ihre wertvollen Kommentare sowie den Mitwirkenden von OpenMind, BitRobot, peaq, Auki Labs, XMAQUINA, GAIB, Vader, Gradient, Tashi Network und CodecFlow für ihr konstruktives Feedback. Obwohl alle Anstrengungen unternommen wurden, um Objektivität und Genauigkeit zu gewährleisten, spiegeln einige Erkenntnisse unvermeidlich subjektive Interpretationen wider, und die Leser werden ermutigt, sich kritisch mit den Inhalten auseinanderzusetzen.
Dieser unabhängige Bericht wird von IOSG Ventures unterstützt. Vielen Dank an Hans (RoboCup Asien-Pazifik), Nichanan Kesonpat (1kx), Robert Koschig (1kx), Amanda Young (Collab+Currency), Jonathan Victor (Ansa Research), Lex Sokolin (Generative Ventures), Jay Yu (Pantera Capital), Jeffrey Hu (Hashkey Capital) für die wertvollen Anregungen zu diesem Artikel. Während des Schreibprozesses wurden auch Rückmeldungen von den Projektteams von OpenMind, BitRobot, peaq, Auki Labs, XMAQUINA, GAIB, Vader, Gradient, Tashi Network und CodecFlow eingeholt. Der Artikel bemüht sich um objektive und präzise Inhalte, einige Ansichten basieren jedoch auf subjektiven Einschätzungen, was unvermeidlich zu Abweichungen führen kann. Wir bitten die Leser um Verständnis.
Brevis Forschungsbericht: Die unendliche verifizierbare Rechenschicht von zkVM und ZK-Datenkoprozessors
Das Paradigma des verifizierbaren Rechnens – „Off-Chain-Berechnung + On-Chain-Verifikation“ – ist zum universellen Rechenmodell für Blockchain-Systeme geworden. Es ermöglicht Blockchain-Anwendungen, nahezu unbegrenzte Rechenfreiheit zu erreichen, während Dezentralisierung und Vertrauenlosigkeit als zentrale Sicherheitsgarantien beibehalten werden. Null-Wissen-Beweise (ZKPs) bilden das Rückgrat dieses Paradigmas, mit Anwendungen hauptsächlich in drei grundlegenden Richtungen: Skalierbarkeit, Datenschutz und Interoperabilität & Datenintegrität. Skalierbarkeit war die erste ZK-Anwendung, die in die Produktion ging, indem die Ausführung Off-Chain verlagert und prägnante Beweise On-Chain für hohe Durchsatzraten und kostengünstige vertrauenslose Skalierung verifiziert wurden.
Brevis Forschungsbericht: Unendliche vertrauenswürdige Berechnungsschicht von ZKVM und Daten-Co-Prozessor
“Off-Chain Berechnung + On-Chain Verifizierung” ist das vertrauenswürdige Berechnungsparadigma (Verifiable Computing), das zum allgemeinen Berechnungsmodell für Blockchain-Systeme geworden ist. Es ermöglicht Blockchain-Anwendungen, nahezu unendliche Rechenfreiheit (computational freedom) zu erlangen, während Dezentralisierung und Minimierung von Vertrauen (trustlessness) in Bezug auf Sicherheit beibehalten werden. Zero-Knowledge-Beweise (ZKP) sind die zentralen Säulen dieses Paradigmas, dessen Anwendungen hauptsächlich auf drei grundlegende Richtungen konzentriert sind: Skalierbarkeit (Scalability), Privatsphäre (Privacy) sowie Interoperabilität und Datenintegrität (Interoperability & Data Integrity). Unter diesen ist Skalierbarkeit das früheste Anwendungsfeld der ZK-Technologie, das durch die Verlagerung der Transaktionsausführung auf Off-Chain und die Verwendung kurzer Beweise zur Verifizierung der Ergebnisse On-Chain hohe TPS und kostengünstige vertrauenswürdige Skalierung (trusted scaling) erreicht.
Cysic Forschungsbericht: Der ComputeFi-Pfad der ZK-Hardwarebeschleunigung
Autor:0xjacobzhao | https://linktr.ee/0xjacobzhao Zero-Knowledge-Beweise (ZK) – als eine Infrastruktur der nächsten Generation für Kryptographie und Skalierbarkeit – zeigen enormes Potenzial in der Blockchain-Skalierung, privater Berechnung, zkML und der Überprüfung über Ketten hinweg. Der Prozess der Beweisgenerierung ist jedoch äußerst rechenintensiv und latenzbelastet, was den größten Engpass für die industrielle Akzeptanz darstellt. ZK-Hardwarebeschleunigung hat sich daher als ein zentrales Enabler herausgestellt. In dieser Landschaft zeichnen sich GPUs durch Vielseitigkeit und Iterationsgeschwindigkeit aus, ASICs streben nach ultimativer Effizienz und großflächiger Leistung, während FPGAs als flexibles Mittelmaß fungieren, das Programmierbarkeit mit Energieeffizienz verbindet. Zusammen bilden sie die Hardwarebasis, die die reale Akzeptanz von ZK antreibt.
Cysic Forschungsbericht: Der Weg zur ComputeFi der ZK-Hardware-Beschleunigung
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Zero-Knowledge-Beweise (ZK) als neue Generation von Kryptografie- und Skalierungsinfrastruktur haben sich in der Blockchain-Skalierung, privater Berechnung sowie in neuartigen Anwendungen wie zkML und Cross-Chain-Verifizierung als vielversprechend erwiesen. Dennoch ist der Prozess der Beweisgenerierung rechenintensiv und mit hohen Verzögerungen verbunden, was zum größten Engpass für die industrielle Umsetzung geworden ist. ZK-Hardware-Beschleunigung ist in diesem Kontext ein zentrales Element, wobei GPU für ihre Vielseitigkeit und Iterationsgeschwindigkeit bekannt ist, ASIC die ultimative Energieeffizienz und Skalierbarkeit anstrebt, während FPGA als intermediäre Form sowohl Flexibilität als auch hohe Energieeffizienz bietet. Diese drei zusammen bilden die Hardware-Basis zur Förderung der Umsetzung von Zero-Knowledge-Beweisen.
GAIB Forschungsbericht: Die On-Chain-Finanzierung der KI-Infrastruktur — RWAiFi
Geschrieben von 0xjacobzhao | https://linktr.ee/0xjacobzhao Wenn KI die am schnellsten wachsende Technologiewelle wird, wird Rechenleistung als neue „Währung“ angesehen, wobei GPUs zu strategischen Vermögenswerten werden. Dennoch bleiben Finanzierung und Liquidität begrenzt, während die Krypto-Finanzierung echte cashflow-unterstützte Vermögenswerte benötigt. Die Tokenisierung von RWA entsteht als Brücke. KI-Infrastruktur, die hochwertige Hardware + vorhersehbare Cashflows kombiniert, wird als der beste Einstiegspunkt für nicht-standardisierte RWAs angesehen – GPUs bieten kurzfristige Praktikabilität, während Robotik die längere Front darstellt. GAIBs RWAiFi (RWA + KI + DeFi) führt einen neuen Weg zur On-Chain-Finanzierung ein und befeuert das Flywheel der KI-Infrastruktur (GPU & Robotik) × RWA × DeFi.
GAIB Forschungsbericht: Der Weg zur On-Chain-Finanzialisierung der AI-Infrastruktur - RWAiFi
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Mit AI, die als die am schnellsten wachsende Technologiewelle der Welt betrachtet wird, wird Rechenleistung als neue "Währung" angesehen, und leistungsstarke Hardware wie GPUs entwickelt sich zunehmend zu strategischen Vermögenswerten. Doch lange Zeit war die Finanzierung und Liquidität dieser Art von Vermögenswerten eingeschränkt. Gleichzeitig benötigt die Krypto-Finanzwelt dringend den Zugang zu hochwertigen Vermögenswerten mit echtem Cashflow, und die RWA-Transformation wird zunehmend zur entscheidenden Brücke zwischen traditioneller Finanzen und dem Krypto-Markt. AI-Infrastrukturvermögen wird aufgrund ihrer Eigenschaften von "hochwertiger Hardware + vorhersehbarem Cashflow" allgemein als der beste Durchbruch für nicht-standardisierte RWA-Assets angesehen, wobei GPUs das realistischste Umsetzungspotenzial bieten, während Roboter eine langfristige Erkundungsrichtung repräsentieren. In diesem Kontext bietet der von GAIB vorgeschlagene RWAiFi-Weg (RWA + AI + DeFi) eine neuartige Lösung für den "On-Chain-Finanzialisierungsweg der AI-Infrastruktur" und fördert den Kreislauf-Effekt von "AI-Infrastruktur (Rechenleistung und Robotik) x RWA x DeFi".
Von Federated Learning zu dezentralen Agentennetzwerken: Eine Analyse zu ChainOpera
Geschrieben von 0xjacobzhao | https://linktr.ee/0xjacobzhao In unserem Juni-Bericht „Der Heilige Gral der Krypto-KI: Grenzerforschung des dezentralen Trainings“ haben wir über Federated Learning gesprochen – ein Paradigma der „kontrollierten Dezentralisierung“, das zwischen verteiltem Training und vollständig dezentralem Training positioniert ist. Sein Kernprinzip besteht darin, Daten lokal zu halten, während Parameter zentral aggregiert werden, ein Design, das besonders für datenschutzsensitives und compliance-lastiges Branchen wie Gesundheitswesen und Finanzwesen geeignet ist.
Von föderiertem Lernen zu dezentralen Agentennetzwerken: Analyse des ChainOpera-Projekts
In dem Forschungsbericht vom Juni (Der heilige Gral der Krypto-KI: An der Front der dezentralen Ausbildung) erwähnen wir das föderierte Lernen (Federated Learning), eine „kontrollierte Dezentralisierung“, die zwischen verteiltem Training und dezentralem Training liegt: Der Kern besteht darin, Daten lokal zu behalten und Parameter zentral zu aggregieren, um den Anforderungen an Datenschutz und Compliance in Bereichen wie Gesundheit und Finanzen gerecht zu werden. Gleichzeitig haben wir in früheren Forschungsberichten kontinuierlich die Entstehung von Agent-Netzwerken (Agent) beobachtet – ihr Wert liegt darin, dass sie durch die Autonomie und Arbeitsteilung mehrerer Agenten komplexe Aufgaben kooperativ erfüllen und die Evolution von „großen Modellen“ zu einem „Multi-Agenten-Ökosystem“ vorantreiben.
OpenLedger Forschungsbericht: Monetarisierung von Daten und Modellen in der AI-Chain
Einführung | Die Ebene der Modelle von Crypto AI Daten, Modelle und Rechenleistung sind die drei zentralen Elemente der AI-Infrastruktur. Sie sind wie Kraftstoff (Daten), Motor (Modelle) und Energie (Rechenleistung) unentbehrlich. Ähnlich wie der evolutionäre Pfad der Infrastruktur in der traditionellen AI-Industrie hat auch der Crypto-AI-Bereich ähnliche Phasen durchlaufen. Anfang 2024 wurde der Markt vorübergehend von dezentralen GPU-Projekten (Akash, Render, io.net usw.) dominiert, die häufig die "Kraft des Rechnens" betonten. Doch ab 2025 verlagert sich der Fokus der Branche zunehmend auf die Modell- und Datenebene, was darauf hinweist, dass Crypto AI von einem Wettbewerb um grundlegende Ressourcen zu einem nachhaltigerem und wertvolleren mittleren Aufbau übergeht.
OpenLedger Forschungsbericht: Eine KI-Kette für monetarisierbare Daten und Modelle
1. Einführung | Der Modell-Layer-Shift in Crypto AI Daten, Modelle und Rechenleistung bilden die drei Kernpfeiler der KI-Infrastruktur – vergleichbar mit Treibstoff (Daten), Motor (Modell) und Energie (Rechnen) – alles unverzichtbar. Ähnlich wie die Entwicklung der Infrastruktur in der traditionellen KI-Branche hat der Crypto-AI-Sektor einen ähnlichen Verlauf durchlaufen. Anfang 2024 war der Markt von dezentralen GPU-Projekten (wie Akash, Render und io.net) dominiert, die durch ein ressourcenintensives Wachstumsmodell gekennzeichnet sind, das sich auf rohe Rechenleistung konzentriert. Bis 2025 hat sich die Aufmerksamkeit der Branche allmählich auf die Modell- und Datenebenen verschoben, was einen Übergang von einem Wettbewerb um Infrastrukturen auf niedriger Ebene zu einer nachhaltigeren, anwendungsgetriebenen Entwicklung in der Mittelschicht markiert.
Von 0xjacobzhao | https://linktr.ee/0xjacobzhao Zweifellos ist Pendle eines der erfolgreichsten DeFi-Protokolle im aktuellen Krypto-Zyklus. Während viele Protokolle aufgrund von Liquiditätsengpässen und nachlassenden Narrativen ins Stocken geraten sind, hat sich Pendle durch seinen einzigartigen Ertragsaufspaltungs- und Handelsmechanismus hervorgetan und ist zum „Preisfindungsort“ für ertragsbringende Vermögenswerte geworden. Durch die tiefe Integration mit Stablecoins, LSTs/LRTs und anderen ertragsgenerierenden Vermögenswerten hat es seine Position als grundlegende „DeFi-Ertragsrate-Infrastruktur“ gesichert.
Von zkVM zum offenen Beweismarkt: Eine Analyse von RISC Zero und Boundless
In der Blockchain ist die Kryptographie die grundlegende Basis für Sicherheit und Vertrauen. Zero-Knowledge-Proofs (ZK) können jede komplexe Off-Chain-Berechnung in einen prägnanten Beweis komprimieren, der effizient On-Chain verifiziert werden kann – ohne auf das Vertrauen Dritter angewiesen zu sein – während gleichzeitig selektives Eingabeverbergen ermöglicht wird, um die Privatsphäre zu wahren. Mit seiner Kombination aus effizienter Verifizierung, Universalität und Privatsphäre ist ZK zu einer Schlüssel-Lösung in den Bereichen Skalierung, Privatsphäre und Interoperabilität geworden. Obwohl Herausforderungen bestehen bleiben, wie die hohen Kosten der Beweisgenerierung und die Komplexität der Schaltungentwicklung, haben die technische Machbarkeit von ZK und der Grad der Akzeptanz bereits andere Ansätze übertroffen, was es zum am weitesten verbreiteten Rahmenwerk für vertrauenswürdige Berechnungen macht.
Melde dich an, um weitere Inhalte zu entdecken
Bleib immer am Ball mit den neuesten Nachrichten aus der Kryptowelt
⚡️ Beteilige dich an aktuellen Diskussionen rund um Kryptothemen
💬 Interagiere mit deinen bevorzugten Content-Erstellern