#DEAL #russia #USA European Parliament Office in Ireland #EUROPE
#ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctionsโRussia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident.
23:55 2025 ะะธะถัะต โ ะฟัะธะบะปะฐะด Python-ะบะพะดั, ะทะณะตะฝะตัะพะฒะฐะฝะพะณะพ ะฝะฐ ะพัะฝะพะฒั ะฝะฐะดะฐะฝะพะณะพ ัะพะฑะพั ะฐะฝะฐะปัะทั, ัะบะธะน:
ััััะบััััั ะบะปััะพะฒั ะตะบะพะฝะพะผััะฝั ัะฒะตัะดะถะตะฝะฝั (ัะพัะณัะฒะปั ะ ะคโะะะ ),
ะผะพะดะตะปัั ะทะฐะปะตะถะฝัััั ะ ะพััั ะฒัะด ะะธัะฐั,
ะฟะพะบะฐะทัั ััะตะฝะฐัะฝะธะน ะฐะฝะฐะปัะท (ัะพ ะฑัะดะต ะฟัะธ ะฟะฐะดัะฝะฝั ัะพัะณัะฒะปั),
ะฑัะดัั ะฟัะพััั ะฒัะทัะฐะปัะทะฐััั.
ะะพะด ะฐะฝะฐะปััะธัะฝะธะน / ัะปััััะฐัะธะฒะฝะธะน, ะฝะต ะฟัะธะฒโัะทะฐะฝะธะน ะดะพ live-ะดะฐะฝะธั
(ะฑะพ ัะธ ะฒะถะต ะดะฐะฒ ัะทะฐะณะฐะปัะฝะตะฝะธะน ะฐะฝะฐะปัะท).
๐น 1. ะกัััะบัััะฐ ะดะฐะฝะธั
+ ะฑะฐะทะพะฒั ะผะตััะธะบะธ ะทะฐะปะตะถะฝะพััั
ะะพะฟััะฒะฐัะธ ะบะพะด
#python #DeAl import pandas as pd
# ะะฐะทะพะฒั ะพััะฝะบะธ ะฝะฐ ะณััะดะตะฝั 2025 (ะท ะฐะฝะฐะปัะทั)
data = {
"year": [2023, 2024, 2025],
"bilateral_trade_usd_billion": [180, 225, 203], # >200B ะท ะฟะฐะดัะฝะฝัะผ ~10%
"russia_energy_export_share_to_china": [0.68, 0.72, 0.75],
"china_share_of_russia_total_trade": [0.32, 0.36, 0.39],
"trade_growth_rate": [0.12, 0.25, -0.10]
}
df = pd.DataFrame(data)
# ะะฝะดะตะบั ะทะฐะปะตะถะฝะพััั ะ ะค ะฒัะด ะะะ
# (ัะฐััะบะฐ ัะพัะณัะฒะปั * ัะฐััะบะฐ ะตะฝะตัะณะพัะตัััััะฒ)
df["dependency_index"] = (
df["china_share_of_russia_total_trade"] *
df["russia_energy_export_share_to_china"]
)
print(df)
๐น 2. ะะฝัะตัะฟัะตัะฐััั ะทะฐะปะตะถะฝะพััั (ะปะพะณััะฝะฐ ะผะพะดะตะปั)
ะะพะฟััะฒะฐัะธ ะบะพะด
Python
def interpret_dependency(index):
if index < 0.15:
return "Low dependency"
elif index < 0.25:
return "Moderate dependency"
else:
return "High dependency"
df["dependency_level"] = df["dependency_index"].apply(interpret_dependency)
print(df[["year", "dependency_index", "dependency_level"]])
๐น 3. ะกัะตะฝะฐัะฝะธะน ะฐะฝะฐะปัะท: ัะพ ะฑัะดะต ะฟัะธ ะฟะพะดะฐะปััะธั
ัะฐะฝะบัััั
ะะพะฟััะฒะฐัะธ ะบะพะด
Python
def trade_scenario(current_trade, shock_percent):
"""
shock_percent: ะฝะตะณะฐัะธะฒะฝะธะน % (ะฝะฐะฟัะธะบะปะฐะด -0.2 = -20%)
"""
return round(current_trade * (1 + shock_percent), 2)
scenarios = {
"baseline": 0.0,
"sanctions_pressure": -0.15,
"china_import_restrictions": -0.25,
}
current_trade = df.loc[df["year"] == 2025, "bilateral_trade_usd_billion"].iloc[0]
scenario_results = {
name: trade_scenario(current_trade, shock)
for name, shock in scenarios.items()
}
print("Scenario outcomes (USD billion):")
for k, v in scenario_results.items():
print(f"{k}: {v}")
๐น 4. ะัะทัะฐะปัะทะฐััั ััะตะฝะดั + ะทะฐะปะตะถะฝะพััั
ะะพะฟััะฒะฐัะธ ะบะพะด
Python
import matplotlib.pyplot as plt
plt.figure()
plt.plot(df["year"], df["bilateral_trade_usd_billion"], marker='o')
plt.title("RussiaโChina Trade Volume (USD Billion)")
plt.xlabel("Year")
plt.ylabel("Trade Volume")
plt.grid(True)
plt.show()
plt.figure()
plt.plot(df["year"], df["dependency_index"], marker='o')
plt.title("Russia Dependency Index on China")
plt.xlabel("Year")
plt.ylabel("Dependency Index")
plt.grid(True)
plt.show()
๐น 5. ะะฝะฐะปััะธัะฝะธะน ะฒะธัะฝะพะฒะพะบ (ะผะฐัะธะฝะฝะฐ ะปะพะณัะบะฐ)
ะะพะฟััะฒะฐัะธ ะบะพะด
Python
latest = df.iloc[-1]
if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0:
conclusion = (
"Russia is structurally dependent on China, "
"but the relationship shows economic friction "
"and asymmetry rather than full subordination."
)
else:
conclusion = "Economic partnership remains balanced."
print("Conclusion:")
print(conclusion)
๐ ะฉะพ ัะตะน ะบะพะด ะฒัะดะพะฑัะฐะถะฐั ะบะพะฝัะตะฟััะฐะปัะฝะพ
โ๏ธ ะะต โappendageโ, ะฐะปะต ะฐัะธะผะตััะธัะฝะฐ ะทะฐะปะตะถะฝัััั
โ๏ธ ะะธัะฐะน = ะตะบะพะฝะพะผััะฝะธะน ยซlifelineยป ะฟัะด ัะฐะฝะบัััะผะธ
โ๏ธ ะะฐะดัะฝะฝั ัะพัะณัะฒะปั โ ะบัะฝะตัั ะฟะฐััะฝะตัััะฒะฐ
โ๏ธ ะะฝะตัะณะตัะธัะฝะฐ ะผะพะฝะพะทะฐะปะตะถะฝัััั โ ะบะปััะพะฒะธะน ัะธะทะธะบ ะ ะค
ะฏะบัะพ ั
ะพัะตั:
๐น ะฒะตัััั ะดะปั Jupyter Notebook
๐น ะดะพะดะฐัะธ CRYPTO / CAPITAL FLOWS
๐น ะฟะตัะตะบะปะฐััะธ ั quantitative risk model
๐น ะพัะพัะผะธัะธ ัะบ EU policy brief / think-tank code
โ ัะบะฐะถะธ, ะฒ ัะบะพะผั ัะพัะผะฐัั ๐
#icrypto - index 6-8